Deductieve redenering

Deductieve redenering

We leggen uit wat de deductieve redenering is, de kenmerken ervan, de verschillen met inductief redeneren en geven verschillende voorbeelden

Wat is deductief redeneren?

Hij deductieve redenering Het is een manier om te beweren waar een uitgangspunt, dat als geldig wordt beschouwd, richt op een specifieke conclusie die ook geldig zal zijn. Van deductief redeneren wordt gezegd dat het van de generaal naar het specifieke gaat.

Het uitgangspunt van deductief redeneren wordt meestal geaccepteerd als wet, of als een algemeen principe dat altijd waar is, en omdat de conclusie uit het uitgangspunt wordt afgeleid, zal de conclusie ook geldig zijn. Met andere woorden, de conclusie zal noodzakelijkerwijs waar zijn.

Laten we een voorbeeld geven: “Mensen die geen vlees eten, zijn vegetarisch. Mauricio eet geen vlees. Dus Mauricio is noodzakelijkerwijs vegetarisch ".

Met deductief redeneren kunnen specifieke fenomenen of feiten worden begrepen, en het is een zeer wijdverbreide redenering bij wetenschappers (wiskunde, fysieke, biologen, enz.); Dit type redeneren biedt echter geen meer informatie, bevestigt of bevestigt alleen het uitgangspunt of axioom.

Bedenk dat het uitgangspunt volgens de logica is die propositie dat is vóór de conclusie en waarvan het begint te komen.

Als het pand van deductief redeneren waar is, zullen de conclusies altijd zijn. Als ze dat niet zijn, kan deductief redeneren leiden tot een misvatting, dat wil zeggen in een vals redeneren. Bijvoorbeeld: “Alle boksers zijn Koreaans. Mohamed Ali was een bokser. Mohamed Ali was Koreaans ”(Mohamed Ali was een zeer beroemde Amerikaanse bokser in de jaren 60). Hier zien we dat het uitgangspunt, vals, leidt tot een conclusie ook onwaar.

Deductieve redeneerkenmerken

Gebouwen en conclusie

Deductief redeneren wordt altijd gevormd door een groot uitgangspunt en een minderjarige, en vervolgens door de conclusie. Een van de beroemdste redeneren is als volgt: “Alle mannen zijn sterfelijk (groot uitgangspunt); Socrates is dodelijk (klein uitgangspunt), Ergo Socrates is dodelijk (conclusie) ".

Kan je van dienst zijn: de 17 meest invloedrijke hedendaagse filosofen

Het pand is altijd waar

Als een van de voorwaarden voor de deductieve redenering om te bestaan, zijn de gebouwen waar, dus ze zullen dat altijd zijn. Zijn pand wordt geaccepteerd als wetten of axioma's.

De conclusies worden toegelaten als geldig

Zoals we in de inleiding hebben uitgelegd, zullen de conclusies als de ware premissen noodzakelijkerwijs zijn, zolang wordt aangenomen dat het redeneringsproces het juiste is.

Er is geen nieuwe informatie

De conclusie is een bevestiging van het pand, het toont alleen een waarheid die al in het pand wordt gegeven. Als we zeggen: “De Maullan -katten. Ik heb een huisdier die maúlla. Dan is mijn huisdier een kat ”, wat we doen is de waarheid in het uitgangspunt bevestigen en begrijpen dat dit huisdier een kat is.

Het formulier bevat geldigheid

We hebben gezegd dat de conclusie geldig is omdat het pand dat is. Aangezien de conclusie niet meer informatie biedt, hangt de geldigheid ervan altijd af van de vorm van redeneren, niet van de inhoud ervan.

Om de conclusie geldig te laten zijn, moet er een interne samenhang zijn tussen de delen van de redenering, tussen het pand en de conclusie.

Kan aanleiding geven tot draadjes

Deze functie is afgeleid van de vorige: als het uitgangspunt onjuist is, zal de conclusie ook zijn. Met andere woorden, als het gepaste proces van deductief redeneren niet wordt voldaan, zullen er fallacies ontstaan.

Bijvoorbeeld: “Alle vrouwen hebben lang haar. Gonzalo heeft lang haar. Gonzalo is een vrouw ". We zien hoe een onzeker uitgangspunt wordt gegenereerd als een conclusie die niet waar is.

Noodzakelijkerwijs conclusie

In elke deductieve redenering zal de conclusie altijd worden afgeleid uit het eerder gegeven pand.

Het wordt gebruikt in de wetenschappelijke methode

Deductief redeneren wordt gebruikt in de wetenschappelijke methode om hypothesen en theorieën te verifiëren.

Het kan je van dienst zijn: populumfallacy

Soorten deductief redeneren

In deductief redeneren kunnen drie soorten worden gewaarschuwd: syllogisme, Modus Tollendo Tollens en de Modus Putting Ponens.

Syllogisme

Dit is de deductieve redenering bij uitstek, waarin het eerste uitgangspunt het grootste is, de tweede minor en de derde de conclusie. Voorbeeld:

  • Mensen hebben gevoelens (groot uitgangspunt).
  • Mariana en Luis hebben gevoelens (klein uitgangspunt).
  • Per noodzaak Mariana en Luis zijn mensen (conclusie).

Modus Tollendo Tollens

Het wordt ook "ontkenning ontkenning" genoemd. Het treedt op wanneer, gegeven een voorwaarde van het eerste uitgangspunt, in de tweede wordt afgewezen. Het schema zou als volgt zijn: als A B impliceert, maar B niet waar is, dan is het niet waar. Voorbeeld:

  • Als het water kookt, is er stoom (uitgangspunt 1).
  • Er is geen stoom (uitgangspunt 2).
  • Dan kookt het water niet (conclusie).

Modus Putting Ponens

Het wordt ook "antecedent verklaring" genoemd. Het wordt gekenmerkt, net als het vorige type, door een initiële conditionaliteit van het eerste uitgangspunt, waar de tweede het bevestigt. Zijn schema zou zijn: als A B impliceert, en als A waar is, dan is B ook waar. Voorbeeld:

  • Als de zwangerschap negen maanden is, wordt het kind op termijn geboren (uitgangspunt 1).
  • De jongen werd negen maanden geboren (uitgangspunt 2).
  • Toen werd het kind geboren op termijn (conclusie).

Verschillen tussen deductief en inductief redeneren

Beide worden op grote schaal gebruikt door onderzoekers, filosofen en wetenschappers, en zelfs in hetzelfde onderzoek kan er een toepassing van de twee zijn. Beide hebben echter substantiële verschillen.

Directionaliteit van redeneren: "Top Down" Vs. "Onderkant boven"

De deductieve redenering is "top naar beneden", dat naar beneden gaat, dat wil zeggen van de generaal tot het specifieke.

De inductieve redenering is "bottom -up", dat wil zeggen, van het bijzonder tot de generaal.

Toepassingsgebieden

De deductieve is van toepassing op formele wetenschappen (logica, wiskunde, enz.) en de inductieve voor de experimentele en sociale wetenschappen.

Kan u dienen: hedendaagse filosofie: oorsprong, kenmerken, stromingen, auteurs

Kenmerken

De deductieve redenering vestigt conclusies op basis van generalisaties, terwijl de inductieve gebaseerd is op het observeren van feiten en fenomenen, en generaliseert uit deze waarnemingen.

De conclusies van de deductieve zijn altijd geldig en rigoureus, terwijl ze in het inductieve waarschijnlijk zijn, ze zijn niet geldig voor zichzelf. De deductieve genereert geen nieuwe kennis, en het inductieve doet.

Deductieve redeneervoorbeelden

voorbeeld 1

  • Alle schildpadden zijn groen.
  • Morro is een schildpad.
  • Morro is groen.

Als we beginnen met het uitgangspunt dat alle schildpadden groen zijn en Morro een schildpad is, dan moeten we noodzakelijkerwijs afleiden dat Morro groen is omdat het een schildpad is.

Voorbeeld 2

  • Kaas is een zuivelafgiering.
  • Zuivelderivaten bevatten calcium.
  • Kaas bevat calcium.

Als zuivelderivaten calcium bevatten, en kaas is, dan bevat kaas calcium.

Voorbeeld 3

  • De voetbalschool geeft van 6 jaar meisjes en jongens toe.
  • Mijn zoon wil voetbal leren in die school en is 5 jaar oud.
  • Mijn zoon zal nog niet worden toegelaten op de voetbalschool.

Aangezien de school een leeftijdsgrens heeft, totdat deze limiet is bereikt, zal deze geen kind toegeven dat er niet aan voldoet.

Voorbeeld 4

  • Ivan moet het eindexamen halen om een ​​ingenieur te ontvangen.
  • Iván keurde het examen goed.
  • Dan wordt Ivan ontvangen als ingenieur.

Op voorwaarde van het uitgangspunt 1 dat plaatsvindt in premisse 2, is de conclusie dat Ivan een ingenieur zal zijn omdat hij het examen heeft goedgekeurd.

Voorbeeld 5

  • De kinderen van Manuel zijn high.
  • Juan is de zoon van Manuel.
  • Juan is lang.

Als Juan de zoon van Manuel is en zijn kinderen hoog zijn, dan is de conclusie dat Juan hoog is omdat hij de zoon van Manuel is.